Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(39): 46292-46299, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37733926

RESUMO

The pyroelectric effect is used in a wide range of applications such as infrared (IR) detection and thermal energy harvesting, which require the pyroelectric materials to simultaneously have a high pyroelectric coefficient and a low dielectric constant for high figures of merit. However, in conventional proper ferroelectrics, the positive correlation between the pyroelectric coefficient and the dielectric constant imposes an insurmountable challenge in upgrading the figures of merit. Here, we explored superior pyroelectricity in [(CH3)4N][FeCl4] (TMA-FC) and [(CH3)4N][FeCl3Br] (TMA-FCB) molecular ferroelectric plastic crystals, which could decouple this positive correlation due to the nature of improper polarization behavior. Therefore, TMA-FC and TMA-FCB derive a high pyroelectric coefficient and a low dielectric constant simultaneously, yielding record-high figures of merit around room temperature. Furthermore, the favorable plasticity enables ferroelectric crystals to attach surfaces with different shapes for device design and integration. More interestingly, the molecular ferroelectrics could be softened and reshaped at elevated temperatures without decay in pyroelectricity, making them recyclable for cost savings and e-waste reduction. Combined with the facile fabrication process, the findings of this work would open avenues for employing molecular ferroelectric plastic crystals in the manufacture of high-performance pyroelectric devices.

2.
Polymers (Basel) ; 15(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36904370

RESUMO

Dental resin composites are universal restorative materials, and various kinds of fillers are used to reinforce their mechanical properties. However, a combined study on the microscale and macroscale mechanical properties of dental resin composites is missing, and the reinforcing mechanism of the composites is still not fully clarified. In this work, the effects of the nano-silica particle on the mechanical properties of dental resin composites were studied by combined dynamic nanoindentation tests and macroscale tensile tests. The reinforcing mechanism of the composites was explored by combining near-infrared spectroscopy, scanning electron microscope, and atomic force microscope characterizations. It was found that the tensile modulus increased from 2.47 GPa to 3.17 GPa, and the ultimate tensile strength increased from 36.22 MPa to 51.75 MPa, with the particle contents increasing from 0% to 10%. From the nanoindentation tests, the storage modulus and hardness of the composites increased by 36.27% and 40.90%, respectively. The storage modulus and hardness were also found to increase by 44.11% and 46.46% when the testing frequency increased from 1 Hz to 210 Hz. Moreover, based on a modulus mapping technique, we found a boundary layer in which the modulus gradually decreased from the edge of the nanoparticle to the resin matrix. Finite element modeling was adopted to illustrate the role of this gradient boundary layer in alleviating the shear stress concentration on the filler-matrix interface. The present study validates mechanical reinforcement and provides a potential new insight for understanding the reinforcing mechanism of dental resin composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...